A Ray-Knight theorem for symmetric Markov processes
نویسندگان
چکیده
منابع مشابه
Binary trees, exploration processes, and an extented Ray–Knight Theorem
We study the bijection betwen binary Galton Watson trees in continuous time and their exploration process, both in the suband in the supercritical cases. We then take the limit over renormalized quantities, as the size of the population tends to infinity. We thus deduce Delmas’ generalization of the second Ray–Knight theorem.
متن کاملBranching processes with competition and generalized Ray Knight Theorem
We consider a discrete model of population with interaction where the birth and death rates are non linear functions of the population size. After proceeding to renormalization of the model parameters, we obtain in the limit of large population that the population size evolves as a diffusion solution of the SDE
متن کاملBinary Trees, Exploration Processes, and an Extended Ray-Knight Theorem
We study the bijection between binary Galton–Watson trees in continuous time and their exploration process, both in the subcritical and in the supercritical cases. We then take the limit over renormalized quantities, as the size of the population tends to ∞. We thus deduce Delmas’ generalization of the second Ray–Knight theorem.
متن کاملA direct proof of the Ray-Knight theorem
© Springer-Verlag, Berlin Heidelberg New York, 1981, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 2000
ISSN: 0091-1798
DOI: 10.1214/aop/1019160507